skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jenkins, Louis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The emergence of fast, dense, nonvolatile main memory suggests that certain long-lived data might remain in their natural pointerrich format across program runs and hardware reboots. Operations on such data must currently be instrumented with explicit writeback and fence instructions to ensure consistency in the wake of a crash. Techniques to minimize the cost of this instrumentation are an active topic of research. We present what we believe to be the first general-purpose approach to building buffered persistent data structures, and a system, Montage, to support that approach. Montage is built on top of the Ralloc nonblocking persistent allocator. It employs a millisecondgranularity epoch clock, and ensures that no operation appears to span an epoch boundary. It also arranges to persist only that data minimally required to reconstruct the structure after a crash. If a crash occurs in epoch e, all work performed in epochs e and e − 1 is lost, but work from prior epochs is preserved, consistently. As in traditional file and database systems, a sync operation can be used to flush buffers on demand; the Montage sync is extremely fast. We describe the implementation of Montage, argue its correctness, and report unprecedented throughput for persistent queues, sets/mappings, and general graphs. 
    more » « less